Manifold indexed fractional fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold Learning of Vector Fields

In this paper, vector field learning is proposed as a new application of manifold learning to vector field. We also provide a learning framework to extract significant features from vector data. Vector data containing position, direction and magnitude information is different from common point data only containing position information. The algorithm of locally linear embedding (LLE) is extended...

متن کامل

Fractional Brownian Vector Fields

This work puts forward an extended definition of vector fractional Brownian motion (fBm) using a distribution theoretic formulation in the spirit of Gel’fand and Vilenkin’s stochastic analysis. We introduce random vector fields that share the statistical invariances of standard vector fBm (self-similarity and rotation invariance) but which, in contrast, have dependent vector components in the g...

متن کامل

Fractional Poisson Fields

This paper considers random balls in a D-dimensional Euclidean space whose centers are prescribed by a homogeneous Poisson point process and whose radii are prescribed by a specific power law. A random field is constructed by counting the number of covering balls at each point. Even though it is not Gaussian, this field shares the same covariance function as the fractional Brownian field (fBf)....

متن کامل

Fractional Poisson Fields

Using inverse subordinators and Mittag-Leffler functions, we present a new definition of a fractional Poisson process parametrized by points of the Euclidean space R+. Some properties are given and, in particular, we prove a long-range dependence property.

متن کامل

Fields on Paracompact Manifold and Anomalies

Abstract In Continuum Light Cone Quantization (CLCQ) the treatment of scalar fields as operator valued distributions and properties of the accompanying test functions are recalled. Due to the paracompactness property of the Euclidean manifold these test functions appear as decomposition of unity. The approach is extended to QED Dirac fields in a gauge invariant way. With such test functions the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Probability and Statistics

سال: 2012

ISSN: 1292-8100,1262-3318

DOI: 10.1051/ps/2011106